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4 Ga2S3 molecules would be required per unit cell 
giving a calculated density of 3.64 g.em. -3. This agrees 
well with the measured macroscopic density of 3.65 
g.cm. -3 given in Handbook of Chemistry and Physics 
(1957-58). Although the symmetry of the space group 
C2 would be satisfied by this disposition of sulphur 
atoms, this would not be so for the tetrahedral posi- 
tions in which the gallium atoms might be supposed 
to lie. I t  appears then that  the structure of a-GagS3 
is not related to the wurtzite structure. On the other 
hand, the space-group requirements would permit the 
gallium atoms to be octahedrally co-ordinated, but this 

possibility must remain tentative until the full struc- 
ture analysis has been completed. 

The authors are indebted to Miss J. Bleack]ey and 
Dr D. W. G. Ballentyne for preparing the specimens 
of gallium sulphide described in this paper. 
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The theory of the diffuse scattering of X-rays from binary alloys with local order has been extended 
to include explicitly the effects of thermal vibrations. By adopting certain simplifying assumptions 
about the lattice vibrations it is found that the thermal effects can be expressed in the form of 
appropriate Debye-Waller factors modifying the usual diffuse scattering terms. Experimental 
measurements verify the predicted general nature and magnitude of the temperature effect. Neglect 
of this effect appears to be a significant source of error in past experimental determinations of local 
order in alloys. 

I n t r o d u c t i o n  

Diffraction theory describing the diffuse X-ray scat- 
tering arising from local orderingt of the atoms in a 
binary alloy has been extended to include the modify- 
ing effects of static displacements due to differing 
atomic sizes by several authors [see, for example, 
Huang (1947); Warren, Averbach & Roberts (1951); 
Boric (1957), (1959)], but the analogous extension 
to include the effects of the dynamic displacements 
due to thermal vibrations has received relatively little 
~tt0ntion, Muld~wor (1954) ~ttempted to develop a 
scattering theory in which the lattice vibrations were 
explicitly included, but his theory was not carried 
beyond a first formal step. Miinster & Sagel (1957) 
developed a theory of the local order diffuse scattering 
in powder patterns in terms of continuous interatomic 
pair probability density functions, thus including 
thermal displacements implicitly; these continuous 

* Research supported by the Atomic Energy Commission 
and by the Office of Ordnance Research, U.S. Army. 

t The term local order is taken to include both the conven- 
tional type of short range order and the clustering of like atoms 
preceding precipitation. 

probability functions were then to be determined from 
each experiment. 

We give here an approximate theory of local order 
diffuse X-ray scattering in which the modifying 
effects of the thermal vibrations are explicitly de- 
scribed. The theory is limited to binary alloys with 
only short range atomic correlations, and for simplicity 
it is further restricted to alloys with monatomic 
face-centered or body-centered cubic lattices. In this 
paper we develop the theory in detail for alloys with 
no atomic size effects and demonstrate the nature and 
magnitude of the predicted temperature effects with 
calculated examples and experimental measurements. 
The extension of the theory to alloys with size-effect 
static displacements following the model of Boric 
(1957) is given in a following paper. 

Theory  

The intensity of X-rays scattered by an array of atoms, 
neglecting extinction and absorption, is given in 
electron units as 

I =.a~, .a~,fmfn exp [ i K . ( r m - r n ) ] ,  (1) 
~t~ n 
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where fm and f ,  are the scatter~g factors of atoms 
located by vectors rm and rn drawn from an arbitrary 
origin; K = 2 z ( s - s 0 ) / ; t ,  where 2 is the X-ray wave- 
length and s and so are unit vectors parallel respec- 
tively to the scattered and incident X-ray beams. 
The sums each extend over the N atoms in the irra- 
diated sample. 

We consider the scattering from an alloy single 
crystal whose atoms are equal in size; the mean atomic 
positions then lie on sites of a periodic lattice. Let 
u T represent the instantaneous thermal displacement 
of an atom of type T ( T = A  or B) from its mean 
position on site m, and let rm~ represent the lattice 
vector from site n to site m. The local ordering of the 
atoms is described by P(r), the probability that  an 
A atom occupies a site at a distance r from a site 
occupied by a B atom. In the limit as r increases, 
P(r) approaches the value x, the atomic fraction of 
A atoms in the alloy. 

Following the procedure outlined by Warren, Aver- 
bach & Roberts (1951), we develop equation (1) in 
terms of these quantities, writing for each pair of 
sites the set of terms corresponding to the different 
possible atomic arrangements, each weighted by its 
appropriate probability of occurrence. This can then 
be rearranged in the form 

I = IL + I sRo ,  (2) 
where 

IL =~,  ~, FmF* exp [iK. r ~ ]  (3) 
m n 

with 

.Fro = (xfa exp [iK.uam]+(1--x)fB exp [iK.uB]) (4) 

and 

IsRo = x ( 1  - x )  ~ ' Z  
m n 

J f~ exp [iU. (u~a-u~)] +f~  exp [iS.  (uB--uff)]~ 
X 

[--fAf~[exp [iK. (u~--u~)] +exp l iE. (u~-u~a)]]J 

× a(rmn) exp [iK.rmn] (5) 
with 

c¢(rmn)= l - (P( rmn) /X)  . (6) 

The term It. represents the fundamental crystalline 
reflections and the usual temperature diffuse scattering 
and will not be further considered here. 

The term IsRo represents the diffuse scattering due 
to local ordering of the atoms, where the nature and 
degree of local order are specified by the short range 
order parameters, c~(r). The effects of temperature on 
this scattering are given by the complex exponentials 
involving the relative thermal displacements. If these 
thermal displacements are neglected, equation (5) 
reduces to the conventional expression for local order 
diffuse scattering introduced by Cowley (1950), 

IsRo----Nx(1--x) ( f A - - f B ) 2 ~  ~x(rn) exp [ iK.r~] ,  (7) 
n 

where rn is the vector from an origin atom to the 

atom on site n. A review of various studies based on 
this equation has been given by Warren & Averbach 
(1953). 

The purpose of the present paper is to investigate 
the effects of thermal vibrations o n  JSRO. As written, 
equation (5) describes the diffuse scattering appro- 
priate to a particular instant of time. In order to be 
able to compare with experimental data, the time 
dependent terms must be averaged. We shall follow 
initially a procedure summarized by James (1948). 

We assume that  the lattice vibrations are harmonic. 
Then it can be shown (see Ott (1935); Born & Sargin- 
son (1941)) that  

(exp [iK.(uSm-U~)]>=exp [--½([K.(USm--UT)]2>]. (8) 

Let the thermal displacements be described as a 
superposition of independent travelling elastic waves 
of the form 

8 u s = ~  egjagj cos (wgj t -2zeg. rm+ 6gj) . (9) 
g , J  

Here eg~ is a unit vector in the direction of vibration 
of the j th  mode ( j = l ,  2, 3) of the elastic wave of 
wave vector t~; cog~ is the angular frequency of this 
mode; a s is the amplitude of vibration of an atom of 
type S ( S = A  or B) in this mode; and bgj is a phase 
associated with this mode which, because of the 
continual absorption and emission of elastic waves in 
a crystal, may change arbitrarily many times in the 
course of a measurement. The sum extends over the 
three modes for each of the N possible wave vectors. 
Implicit in this formulation is the assumption that  the 
phase of the motion of an atom due to a given mode 
is independent of the atom type (A or B); this is not 
true in an alloy with long range order, but it seems 
a reasonable approximation if only local order is 
present. 

Then, using equation (9), 

- ½ ([K. ( u ~ -  u~)] 2) = -~.a~ (K. egj) 2 
gJ 

T ~ s T ( 2 ~ g . r m . ) } .  (10) × {(aS) 9' + (ag]) -- 2(ag]%i) cos 
But 

½-~ (K. egj) ~" (a~j)s 2-2Ms-  , (11) 
gi 

where 2Ms  is the exponent of the customary Debye- 
Waller factor for atoms of type S in this lattice. Thus 

- ½([K. (uS-u~)]2)=  - ( M s +  MT)+DsT(rmn) ,  (12) 

where we have defined 

DsT(rmn) ½.~ (K e ~' s T (2~Zp,.rm~). (13) = . gj) (agjagi) cos 
g] 

In evaluating DsT(rm~) several approximations are 
adopted concerning the lattice vibrations. 

We assume that  the amplitude of vibration in any 
given mode is the same for both types of atoms, i.e., 
agjA = a B= agj. Then MA -~- M B  = M and DST (rmn) = 
D(rmn), also independent of atom type. 
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We assume tha t  the temperature is sufficiently high 
so tha t  there is equipartition of energy among the 
various modes of vibration. By comparing the average 
lattice energy writ ten in terms of atomic kinetic 
energies with tha t  given in terms of the mean energy 

2 per mode, /cT, one finds tha t  a~=2kT/Nmc%i, where 
m is the mean atomic mass, k is the Boltzmann 
constant and T, the absolute temperature. Then 

D ( r ~ )  = (kT/Nm) ~, (K. eg~/Co~) ~. cos (2~g.  r ~ ) .  (14) 
gi 

The analytic forms for D(rmn), equation (17), and 
2M, equation (20), appear to depend in a very similar 
manner on the approximations of equipartition of 
energy, elastic isotropy, and a spherical Brillouin zone. 
Now the factor 2M can be determined experimentally. 
Thus if D(rm~) is evaluated from equations (21) or (22), 
using an experimental value for 2M, it seems reason- 
able to expect tha t  the resulting expression will be 
essentially independent of the limitations of these 
approximations. 

We assume tha t  the crystal is elastically isotropic. 1.0 
Then ' ' , I ' ' ' I ' ' 

. 

(K.egj )  ~. [KJ ~ ¢ 1 / 1 1 \ ~ 0.9 
- 

(15) 0.7 

where ~ is the angle between K and g. <Vg), an aver- 0.6 
age phase velocity for modes of wave vector g, is 
defined in terms of the corresponding longitudinal and ~ 0. 
transverse mode phase velocities, Vgg and Vat, by 0.~ 
the relation 

l/(Vg)~'=~{(l/V~,)+(2/V~,)}. ( 1 6 )  o.a 
1 5 10 

We now approximate the actual first Brillouin zone 0.2 , , , , , , , , , , F.c.c. 
by  a sphere of the same volume, v; the radius of this ' 0.1 
sphere is g~. Since the density of wave vectors in the ~ I ~ . I I . ~ ~ ~ ~ ~. 
Brillouin zone is N/v, a very large number, the 0 1 2 s 
summation over wave vectors in equation (14) is well 
approximated by an integration. Writing this in terms 
of polar coordinates oriented along rm~, the angular 
integrals can be carried out, giving 

D ( r m ~ ) -  ~ kT[KI~' 
, 7~mv So dg} 

gm 1 

x {[1--7(rmn)]+(cos e#-½)a(rmn)}, (17) 

where/~ is the angle between K and r=n, and where 
7(r) and a(r) are defined by the relations 

f "n 1 lgra 1 sin-2~-rgdg (18) [ 1 -  7(r)] dg = o ~ - ~  o (Va) ~ 2~rg 
and 

0 #= 
{3 sin 2~rg-- 2~rg cos 2~rg sin 2~rg~ 

x (2~rg) a 2~rg jdg"  (19) 

The customary Debye-Waller  exponent 2M, defined 
by  equation (11), can be evaluated by making exactly 
the same approximations, giving 

(20) 
~ m v  Jo 

Thus we can write 

D(rmn) = 2M([1-7(rmn)]+(cos 2/z-½)a(rm.)} (21) 

= 2 M { 1 -  qg(r~)}.  (22) 

~m 

Fig. 1. C a l c u l a t e d  c u r v e s  of  7(r)  f o r  t w o  m o d e l s  of  t h e  d i spe r -  
s ion  of e las t i c  w a v e s .  C u r v e  N is o b t a i n e d  on  a s s u m i n g  t h a t  
t h e r e  is no  d i s p e r s i o n ;  c u r v e  D is o b t a i n e d  on  a s s u m i n g  
t h a t  t h e  d i s p e r s i o n  is t h e  s a m e  as  t h a t  fo r  a s i m p l e  l i nea r  
cha in .  T h e  i n s e t  sca le  i n d i c a t e s  t h e  a b s c i s s a  v a l u e s  fo r  t h e  
f i r s t  t e n  n e i g h b o r s  in  a f .e .c ,  l a t t i ce•  

The functions 7(r) and a(r) depend on the dispersion 
of the elastic waves. Numerical calculations have been 
made for two widely different models--model N, 
which assumes no dispersion, i.e., velocities indepen- 
dent of wavelength; and model D, which assumes the 
dispersion in a given branch to be tha t  for a linear 
chain with only nearest neighbor interactions, i.e., 

• ~ g / ~ g  
Vg Vo 2 gm/ 2 gm (23) ---- s m  . . . .  

Values of 7(r), the major term, are plotted in Fig. 1 
for both models as a function of the product rgm; 
the inserted scale indicates the values of rg,~ for the 
first ten neighbors in a monatomic face-centered cubic 
lattice. Despite the considerable difference between 
the two models, the values of 7(r) for the two eases 
are quite similar, differing by only 15% for nearest 
neighbors and by less than 10% for all other neighbors. 
This same insensitivity to the dispersion relations is 
also found for the function a(r). The calculation based 
on model D, physically the more realistic, should thus 
serve as a reasonable approximation for real crystals. 
Values for this case are listed in Table 1. 



rgm 

0.000 
0-125 
0.250 
0.375 
0.5OO 
0.625 
0.750 
0.875 
1.000 
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Table 1. Calculated parameters for 
linear chain dispersion 

~(r) .4 *a(r) rgm 7(r) A *f(r) 
0.0000 0.0000 1.125 0.8605 0.0977 
0.0428 0.0166 1.250 0-8527 0.0644 
0.1587 0.0613 1.500 0.8607 0.0450 
0.3228 0.1181 1.750 0.8982 0-0588 
0.5000 0.1708 2.000 0-9208 0.0573 
0.6562 0.2011 2.250 0-9193 0.0386 
0.7710 0.2038 2-500 0.9208 0.0298 
0.8367 0.1801 2.750 0.9348 
0.8607 0.1394 
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where the b~ are the usual reciprocal cell axes and 
where hi, h2, and ha are continuous variables whose 
integral values correspond to the Miller indices for 
possible crystalline reflections. Then, taking account 
of the center of symmetry  of these lattices, equation 
(25) becomes 

N = ( 1 - = ) ( f ~ - f . )  ~ ~ ~ 
x exp [ -  2M~z=,] cos ~ (lhl + mh9 + nha). (29) 

* A  

elastic 
t hen  .4 

= V~t , whose value depends  on the  

constants  of the  crystal  being studied.  If  Voz=2V0~, 

equals uni ty .  

From equations (18), (12) and (22) we now have 

(exp [ iK. (uS~-u~) ] )=exp  [ - 2 / ~ ( r m . ) ] .  (24) 

Neglecting surface effects, the double sum of equation 
(5) is replaced by N times a single sum over all sites, 
and the average intensity is given finally as 

i s=o--  Nx(1 - x) ( f ~ - f . ) 2  2 ~ ( r . )  

For powder patterns the equation for the defuse 
scattering is obtained by  averaging the terms in 
equation (25) as rn takes with equal probabili ty all 
orientations with respect to K. The result can be ex- 
pressed as a power series in the quant i ty  2Ma,, of 
which the first terms are 

i sRo = .,T, g~ o.  
N x ( 1 - x ) ( f a - f . )  ~" i 

~sin Kr~ 2Ma~FI(Kr~)+ . . .} (30) 
x exp [ -2M7~]  [ -K-~ 

where 
FI(Kr) ~ (3 sin K r -  Kr cos Kr sin Kr~ (3 ] ) 

= - -1,:r J" 
x exp [ -  2M~ (rn)] exp [iK. rn] ,  (25) 

where rn is the lattice vector from the site of the origin 
atom to site n. 

The presence of thermal vibrations thus effectively 
causes each short range order coefficient to be mod- 
ified by  an appropriate exponential damping factor. 
These damping factors depend on temperature and on 
scattering angle, as is shown by the relation (see, 
for example, James (1948)) 

2M= 12h~T/(mkOP){¢(x)+¼ x} sins O/~', (26) 

where h, O and 20 are respectively Planck's constant, 
the X-ray Debye temperature,  and the scattering 
angle. The bracketed function, {¢(x)+x/4}, where 
x= O/T, is approximately uni ty  for T > O. There is 
also a dependence on interatomie separation, given by 
~(r);  this arises from the fact tha t  atoms close to- 
gether on a lattice vibrate more nearly in phase on the 
average than do atoms tha t  are widely separated and 
thus have a smaller mean square relative displace- 

ment. 
I t  is often convenient to describe the defuse scat- 

tering in terms of reciprocal space coordinates. For the 
cubic lattices under consideration we can write 

rn = ½(lal + map + naa) , (27) 

where the at are the usual cubic axes and where l, m, 
and n are integers. For face-centered cubic lattices, 
l+m+n must be an even number, and for body- 
centered cubic lattices l, m, and n must be either all 
odd or all even. The diffraction vector can be written 

K = 2 ~  (hlbl  + h2b9 + hab3),  (28) 

(Kr) 3 

The summation extends over the various shells of 
neighboring atoms; Ct is the number of neighbors in 
the i th shell, and K =  [KI = (47~ sin 0)/~. Values of the 
quant i ty  aFl(Kr) are always small; for example, for 
aluminum the maximum value is approximately 0.04. 

P r e d i c t e d  effects 

To illustrate the temperature effects predicted, a cal- 
culation has been made of the short range order diffuse 
scattering from a face-centered cubic single crystal, 
first neglecting and then including the exponential 

3 

j J | 

Calculated scattering for Cu3Au at 405°C 
a1=-0.113 a3=-0.012 
a2=+0.185 Oo =244°K 

J 

h 

Fig. 2. Calculated curves of short  range order scat tering with- 
out  (solid lines; equat ion (7)) and wi th  (dashed lines; 
equat ion  (25)) inclusion of the  exponent ia l  t empera tu re  
factors. The intensities, in uni ts  of the  Laue  monotonic  
scattering,  are given as a funct ion of posi t ion along a [100] 
axis in reciprocal space for a model  corresponding to CuaAu 
a t  405 °C. 
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damping factors of equation (29). The parameters 
used correspond approximately to those of the alloy 
CusAu at 405 °C. (,-~ 15 ° above Tc). The calculated 
intensities, in units of the Laue monotonic scattering, 
Nx(1-x)  (fA--fB) 2, are shown in Fig. 2 as a function 
of position along the [100] axis in reciprocal space. 

The scattering curve calculated from the temper- 
ature-independent theory is periodic in reciprocal 
space. The scattering curve calculated from the theory 
including the exponential temperature factors is not 
periodic. Instead the modulations in the scattering, 
the diffuse peaks and minima, show an attenuation 
which increases rapidly with increasing scattering 
angle. In this example the intensity of the lowest angle 
diffuse peak, at h=  1, is reduced by 2.3%, while the 
intensity of the second diffuse peak, at h _~ 3, is reduced 
by 17.7%. The magnitude of the attenuation increases 
also with increasing temperature. A secondary effect 
of the temperature factors is to shift the maxima of 
the diffuse peaks to smaller angles. The displacement 
is small; in this example the second diffuse peak occurs 
at h =  2.98 rather than h = 3. 

The monotonic background scattering characteristic 
of a completely random alloy, the term for l = m = n = 0 
in equation (29), is not affected by a temperature 
factor. There can be no thermal displacement of an 
atom relative to itself, so ~(0) = 0. In contrast, M~nster 
& Sagel (1957) have predicted a large attenuation of 
this monotonic scattering. Their result appears to have 
been caused by the adoption of a poor mathematical 
approximation. 

Experimental evidence 

Several examples of short range order diffuse scattering 
have been reported that show an attenuation of the 
intensity of the diffuse peaks with increasing (sin 0)/~t 
of the type predicted. Muldawer (1954), studying 
Au-doped fl-AgZn, found the (300) diffuse peak to be 
weaker than the (100) diffuse peak. Keating & Walker 
(1959), in a neutron diffraction study of fl-CuZn, found 
the (111) diffuse peak to be weaker than the (100) 
diffuse peak. Boric (1957) reported a related effect for 
quenched Cu3Au; the Fourier coefficients for the (300) 
diffuse peak were smaller than the corresponding 
coefficients for the (100) diffuse peak, the ratios 
approaching the value exp [ - ( 2 M + 2 M ' ) ] .  (The arti- 
ficial temperature factor 2M' arises from long range 
elastic strains due to differing atomic size.) 

The temperature dependence can be investigated by 
measuring the scattering from a quenched alloy at 
300 °K. and at 78 °K., temperatures at which no 
change in the local order should be expected. Such 
measurements have been made on a single crystal of 
nominal composition Cu2Au cut with faces parallel to 
(100) planes and quenched from 450 °C. Crystal 
monochromated Mo Kc~ radiation was used, with the 
X-ray tube operated at 30 kV. peak to avoid the 
presence of half-wavelength radiation, and the diffuse 

scattering was measured along the [100] axis in 
reciprocal space from the (200) reflection to the 
(10,00) reflection. The measured intensities, corrected 
only for fluorescence and cosmic ray background, are 
plotted in Fig. 3. The off-scale peaks at h=2 ,  4, 6, 
etc., are the fundamental crystalline reflections (200), 
(400), (600), etc. and their associated temperature 
diffuse scattering. The diffuse peaks at h _ 3, 5, 7, and 9 
are due to short range order. The asymmetry of the 
background on either side of the short range order 
peaks results from appreciable atomic size effects 
(see Warren, Averbach & Roberts (1951)). Both curves 
show the strong decrease of intensities with increasing 
(sin 0)/A that is characteristic of the angular depen- 
dence of the atomic scattering factors. 

500 

400 

200 

iO0 

i i i i i i 

Cu2Au Quenched from 450°C . . . .  _ T=78°K 
. . . .  T= 300 °K 

i 
h 

Fig. 3. Exper imenta l  measurements  of the  scat tering along the  
[100] axis in reciprocal space from a quenched single 
crystal  of the ahoy C u ~ u  at  sample tempera tures  of 78 °K. 
and 300 °K. Crysta l -monochromated Me K a  was used, and  
the measured intensities have been corrected only for 
fluorescence and cosmic ray background.  

Comparison of the short range order diffuse scatter- 
ing peaks at the two temperatures clearly shows the 
predicted temperature effects. The peak intensities at 
300 °K. are lower than the corresponding intensities 
at 78 °K., and the amount of this thermal attenuation 
increases rapidly with increasing distance out in 
reciprocal space. An accurate quantitative check of 
the theory is not possible from these measurements, 
since the short range order scattering is accompanied 
both by a v~rying, unknown amount of temperature 
diffuse scattering and by strong atomic size effects. 
Within the rather large limits of error caused by these 
factors, which, for example, corresponds to an un- 
certainty of approximately _+30% of the observed 
attenuation for the peak at h=7 ,  the observed at- 
tenuations associated with this change in temperature 
are in agreement with the theoretical predictions. 

Discussion and conclusions 

An approximate theory of local order diffuse scattering 
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from binary alloys has been developed in which the 
effects of the thermal vibrations are explicitly de- 
scribed. Briefly, the thermal effects appear as appro- 
priate exponential temperature factors modifying the 
various short range order coefficients in the usual 
Fourier series representation of the diffuse scattering. 
These temperature factors at tenuate the modulations 
in the diffuse scattering (the peaks and minima), 
with the amount of at tenuation increasing rapidly with 
increasing scattering angle and temperature. The Laue 
monotonic scattering term is not affected. 

In the derivation of this theory a number of ap- 
proximations have been adopted concerning the nature 
of the lattice vibrations. Fortunately,  most of these 
approximations seem to have little effect on the final 
expression, since the relevant factor in the final form 
can be expressed as the product of two terms, one 
relatively insensitive to the various approximations 
and the other an experimentally measurable quanti ty.  

One approximation should be examined further. I t  
has been assumed tha t  the amplitude of vibration in 
any given mode is the same for both types of atoms. 
There is no information known about the vibrations 
of atoms in a binary alloy with only local order, so 
the reliability of this approximation is uncertain, but  
intuitively it seems to be the most restrictive step in 
the theory. The dependence of the final expression on 
this approximation can be investigated by adopting 
instead a less restrictive approximation, namely, that  
the ratio of the amplitudes of vibration in any given 
mode for the two types of atoms be a constant, i.e., 

B A__  adag ] -  C. Then MB= C2MA. If we proceed as before, 
asuming in addition tha t  the quant i ty  

(MA+MB--2V(MAMB)) 

is negligible compared to unity, we obtain finally 

iSRO = N x ( 1 - x ) . ~  (fA exp [--MA~(rn)]--fB 
n 

× exp [ -  MB~ (r~)]}2a (r~) exp [iK. r . ]  . (32) 

The temperature effects predicted by this equation 
are qualitatively the same as those predicted by 
equation (25), but there can be significant quanti tat ive 
differences if MA and MB differ widely. Since marked 
differences between MA and MB do exist for some 
alloys with long range order, one should expect tha t  
similar differences between Debye-Waller factors may 
also exist for certain alloy systems with only local 
order. We must conclude then tha t  in some cases, 
for which at present there are no dependable criteria 
for identification, equation (25) may serve only as a 
first approximation. 

The general features of the predicted temperature 
effects have been confirmed by experimental observa- 
tions. Results for several alloys have shown an 
at tenuation of the short range order diffuse scattering 
peaks tha t  increased with increasing (sin 0)//t. Measure- 
ments on the alloy Cu~ Au given here show that  this 

at tenuation increases both with increasing (sin 0)/~ 
and with increasing temperature, and the agreement 
between the theoretical predictions and the measured 
temperature dependence of the at tenuation gives a 
semi-quantitative confirmation of the theory. A more 
accurate quanti tat ive comparison of the theory with 
experimental data is still to be desired. 

The magnitudes of these thermal effects are not 
negligible, particularly in the normal high-angle region 
in which most short range order diffuse scattering 
studies have been made. This is illustrated both by 
the calculated scattering curves of Fig. 2, where the 
model approximates CusAu at 405 °C., and by the 
experimental scattering curves of Fig. 3. Such atten- 
uated scattering curves, if analyzed by the usual 
Fourier transform procedure, will give 'experimental '  
values for the short range order parameters tha t  are 
too small in magnitude as compared with the true 
values. As an example, Fourier transforms have been 
made of the temperature-affected diffuse scattering 
curve of Fig. 2 from h=2 to h=4 ,  where conditions 
correspond quite closely to those in the s tudy by  
Cowley (1950), and the resulting coefficients inter- 
preted by means of the customary temperature- 
independent theory, equation (7), to give 'experimen- 
tal '  values for the short range order parameters. The 
value obtained for the first neighbor parameter, al, 
is -0 .085,  24% smaller in magnitude than the true 
value of -0 .113,  and the values for the higher neighbor 
parameters are at tenuated by an even greater per- 
centage. Thus in these conditions the thermal effect 
is quite important.  At the smaller angles the effect 
is of course much less; a similar analysis of this 
scattering curve from h=O to h = 2  gives values for 
the short range order parameters tha t  are at tenuated 
by only approximately 3 %. 

The neglect of this temperature effect appears to 
be a significant source of error in past  experimental 
studies of short range order in alloys. The majori ty 
of the single crystal studies (Cowley (1950), Sutcliffe 
& Jaumot  (1953), Roberts (1954), Bat terman (1957)) 
were made at  such temperatures and scattering angles 
as would lead to thermal attenuations comparable to 
tha t  for our model of Cu~Au in the neighborhood of 
h--3. The short range order parameters reported for 
these alloys thus can all be estimated to be roughly 
20% too small in magnitude as a result of this effect. 
In the single crystal studies made at  lower temper- 
atures or smaller scattering angles (Norman & Warren 
(1951), Suoninen & Warren (1958)) the errors due to 
this effect are of course much less. The errors in the 
short range order parameters determined from powder 
pat tern diffuse scattering measurements are more 
difficult to estimate, since the temperature factors 
enter the analysis in a rather complicated manner 
(Flinn, Averbaeh & Rudman (1954)). As in the single 
crystal cases, thermal at tenuation has caused the 
measured parameters to be too small. 

The value of using low-angle diffuse scattering 
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measurements for studies of local order in alloys is 
again emphasized. In the low-angle region the Compton 
scattering, the thermal diffuse scattering, atomic size 
effects and thermal attenuations are all at their 
smallest, so that  with low-angle measurements one can 
obtain the greatest possible accuracy of interpretation. 

The authors are grateful to Dr M. Marezio for his 
help with the measurements of the diffuse scattering 
from Cu2Au. 
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Ultrasonic Methods of Determining Elasto-Optic Constants of Uniaxial  
and Biaxial Crystals* 
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Ultrasonic methods of studying the photoelastic behaviour of crystals, suggested by Mueller in 
1938, have heretofore been applied only to glasses and cubic crystals. The method has been applied 
to uniaxial and biaxial crystals. Both theory and experiment are given. The ultrasonic methods 
replace the more difficult and less accurate interferometric methods for determining the elasto-optic 
constants. Results obtained on calcite, quartz, and barite are presented. 

In troduct ion  

Studies on the photoelastic behavior of solids have as 
their aim the determination of elasto-optic and piezo- 
optic constants (the p's and q's of Pockels (1906)) for 
the given solid. In an actual experiment, one deter- 
mines the small changes in refractive index in different 
directions when a stress of known magnitude is applied 
in certain convenient directions. The bulk of the results 
obtained for p's and q's is based on the optical measure- 
ments in which one obtains relative path retardations 
using any one of the well known interferometers. The 
discovery of ultrasonics and the effect of a sound field 
on a transparent crystal through which polarized light 
is passing, led Bergmann & Fues (1936) to indicate the 
possibility of studying the photo-elastic constants of 

* This paper formed a part of thesis presented to Osmania 
University, Hyderabad, India, in 1955. 

t On leave from Osmania University, Hyderabad, India. 

glasses by observing the polarized diffraction spectra 
from a point source. The situation very much im- 
proved when Hiedemann & Hoesch (1936) showed how 
easily line diffraction patterns could be obtained. 
The theory of diffraction of light in solids given by 
Nath & Mueller (1938) was experimentally verified by 
Hiedemann (1938). Subsequently, Mueller (1938) sug- 
gested in detail various methods of obtaining the 
elasto-optic constants of glasses and cubic crystals by 
studying the polarized diffraction spectra. Using the 
procedure suggested by Burstein et al. (1948), Vedam 
(1950) and Iyengar (1953) obtained all the photo- 
elastic constants of some glasses and cubic crystals by 
combining the relative path retardation methods using 
the Babinet compensator with the ultrasonic method 
due to Mueller (1938). I t  may be pointed out that  the 
ultrasonic methods yield results to the same order of 
accuracy as the Babinet compensator method, whereas 
the interferometric methods often yield results differ- 


